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Abstract:  We modify the Knuth-Klingsberg Gray code for unrestricted integer compositions to 
obtain a Gray code for integer compositions each of whose parts is bounded between zero and 
some positive integer.  We also generalize Ehrlich's method for loop-free sequencing to 
implement this Gray code in O(1) worst-case time per composition.  The (n-1)-part compositions 
of r whose ith part is bounded by n-i are the inversion vectors of the permutations of {1,...,n} 
with r inversions; we thus obtain a Gray code and a loop-free sequencing algorithm for this set of 
permutations. 
 

0. Introduction 
 

 An n-part composition of a non-negative integer r is an ordered n-tuple (g1,...,gn) of non-
negative integers whose sum is r.  Such a composition is said to be (m1,...,mn)-bounded for an 
n-tuple (m1,...,mn) of positive integers if 0 ≤ gi ≤ mi for all i.  Bousquet [Bous] used bounded 

integer compositions to count planar maps with two faces as a function of the degrees of the 
vertices.  Here we apply them to permutations with a fixed number of inversions.  The inversion 
vector of a permutation (p1,...,pn) is the ordered (n-1)-tuple (g1,...,gn-1), where gi is the number 
of elements pj such that j > i but pj < pi.  Evidently 0 ≤ gi ≤ n-i for all i, so that the inversion 

tables for all the permutations of {1,...,n} with r inversions are the (n-1,...,2,1)-bounded 
compositions of r.  In Section 1 we discuss counting, ranking and lexicographical-order 
generation of bounded integer compositions.  In particular, we show that if the (n-1,...,2,1)-
bounded compositions of r are generated in inverse lexicographical order, then the corresponding 
permutations can be sequenced - transformed into their successors - in O(n) worst-case time 
apiece.  We also present a non-recursive formula for the number M(n,r) of permutations of 
{1,...,n} with r inversions and a practical algorithm for computing a single value of M(n,r). 

 A Gray code is a family of lists of words such that in each list the number of letters by 
which each word differs from its successor is bounded independently of the length of the word.  
A recursive description of a Gray code for unbounded integer compositions was suggested by 
Knuth [Wi] and a non-recursive description was given by Klingsberg [Kl].  Each composition of 
r is obtained from its predecessor by raising one number by 1 and lowering another number by 1.  
When only the compositions which lie within a given n-tuple of bounds are selected from the list 
of unbounded compositions of r, each bounded composition is still obtained from its predecessor 
by raising one number by 1 and lowering another number by 1.  This Gray code, like 
Klingsberg's, has the property that all the words in a list with a common suffix form an interval 
of consecutive words (we call such a list suffix-partitioned); so we can use Chase's method [Ch] 
to obtain a non-recursive description of a Gray code for bounded integer compositions: for each 
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suffix (gi+1,...,gn) we give the sequence of distinct values assumed by gi in the interval in which 

that suffix is constant.  If the (n-1,...,2,1)-bounded compositions of r are put into this order, then 
the corresponding permutations can be updated in O(1) worst-case time apiece and each 
permutation is obtained from its predecessor by either two independent two-element 
transpositions or a three-element rotation.  These results are presented in Section 2. 

 A loop-free algorithm is one that runs in O(1) worst-case time.  The obstacle to loop-free 
sequencing of a word in a Gray code is not changing the letters but finding the pivot - the index 
of the rightmost letter that must change to sequence the word.  Ehrlich [Eh] solved this problem 
for several classical Gray codes.  In [Wa1] and [Wa2] we showed that his method works for any 
suffix-partitioned word list with the additional property that for each suffix (gi+1,...,gn), gi 

assumes at least two distinct values in the interval in which the suffix is constant.  Many of the 
Gray codes in the literature, such as the Liu-Tang Gray code for combinations [LT] and the 
Knuth-Klingsberg Gray code are suffix-partitioned but do not have this additional property.  Ad 
hoc methods can often be used to find the pivot in O(1) time - for example, in [Wa1] we showed 
that the Liu-Tang Gray code can be sequenced in O(1) time and O(1) extra space because the 
pivot differs by at most 2 from one combination to the next and that the Knuth-Klingsberg Gray 
code can be sequenced in O(1) time by storing the positions of the non-zero elements in a stack.  
This can also be done with our Gray code but it would require five auxiliary arrays.  In Section 3 
we generalize Ehrlich's method so that it works even if there are suffixes (gi+1,...,gn) for which gi 

assumes a single value in the interval in which the suffix is constant provided that this interval 
contains only a single word.  The Liu-Tang Gray code, the Knuth-Klingsberg Gray code and 
ours all have this property; so our generalization of Ehrlich's method works for them all, and in 
the case of our Gray code, only two auxiliary arrays are needed.  In this way we can sequence 
n-permutations with r inversions in O(1) worst-case time apiece.  Computer time-trials indicate 
that loop-free sequencing actually does save some CPU time. 

1. Enumeration, ranking and lexicographical order sequencing 

 The rank of an item in a list is the number of items that precede it in the list.  For a prefix-
partitioned word list, the rank of the item (g1,...,gn) is 

#(g1,. .., gi−1, j)
j=0

gj−1

∑ ,        
i=1

n
∑                                          (1)  

where #(g1,...,gi-1,j) is the number of items in the list with prefix (g1,...,gi-1,j).  In the case of 
(m1,...,mn)-bounded compositions of r, #(g1,...,gi-1,j) is just the number of (mi+1,...,mn)-bounded 
compositions of r-(g1+...+gi-1+j), so that the ranking problem is reduced to enumeration. 
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 The enumerating generating function for (m1,...,mn)-bounded compositions is 

x j
j=0

mi −1

∑
i=1

n
∏ = (1 − xmi

i=1

n
∏ )
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ (1− x)−n ,                                      (2)  

and the number #() of (m1,...,mn)-bounded compositions of r is just the coefficient of xr in (2), 

which can be computed from the right side of (2) in O(nr) time storing r large integers.  The 
corresponding generating function for the number M(n,r) of n-permutations with r inversions 
was found by MacMahon [Mac], after whom those numbers were named mahonians: 

x j
j=0

i−1
∑

i=1

n
∏ = (1 − x)i

i=1

n
∏
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (1 − x)−n .                                            (3)

 

Kendall [Ken] evaluated tables of values of M(n,r) by substituting into the recurrence 

M(n, r) =  

1                                                                                        if r = 0,
M(n, r - 1) +  M(n -1,r)               if 1 ≤ r ≤ min(n -1,n(n -1) / 4),
M(n, r - 1) +  M(n -1,r) -  M(n -1,r - n)     if n ≤ r ≤ n(n -1) / 4,
M(n,n(n -1) / 2 - r )                          if n(n -1) / 4 < r ≤ n(n -1) / 2.

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

                   (4)  

If one wants to compute a single value of M(n,r) rather than a whole table, then using the right 
side of (3) has the advantage that the numbers one has to store and compute with before 
multiplying by (1-x)-n are bounded by 2n instead of n!. 

 Further economies can be made by using two formulae proved by Euler [Eul] (a 
combinatorial proof of the first identity was given by Franklin [Fra]): 

(1 − x)i
i=1

∞

∏
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 1+ (-1)k xk(3k−1)/ 2 + xk (3k +1)/2( )

k=1

∞

∑ .                                            (5)
 

  
(1 − x)i

i=1

n
∏ = (1 − x)i

i=1

∞

∏
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 1 + xn+1

(1− x)
+

x2(n+1)

(1− x)(1 − x2)
+L

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ .                                   (6)  
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MahonQuick:=proc(n,r) 
local a,b,i,k,Odd,nc2,i1,i2; 
a:=table(); 
b:=table(); 
nc2:=n*(n-1)/2; 
s:=min(r,nc2-r); 
if s<0 then RETURN(0) fi; 

#expansion of (1-x)(1-x2)(1-x3)...to ∞ from the Euler-Franklin formula (5)# 
a[0]:=1; 
for i from 1 to r do a[i]:=0 od; 
k:=1; Odd:=true; i1:=1; i2:=2; 
while i2<=r do 
  if Odd then 
    a[i1]:=-1; a[i2]:=-1; 
  else 
    a[i1]:=1; a[i2]:=1; 
  fi; 
  Odd:=not(Odd); 
  k:=k+1; i1:=i2+2*k-1; i2:=i1+k; 
od; 
if i1<=r then 
  if Odd then a[i1]:=-1 else a[i1]:=1 fi; 
fi; 

#expansion of (1-x)(1-x2)(1-x3)...(1-xn) from Euler's formula (6)# 
for i from 0 to r do b[i]:=a[i] od; 
i:=1; k:=n+1; 
while k<=r do 
  for i1 from i to r-k do a[i1]:=a[i1]+a[i1-i] od; 
  for i1 from k to r do b[i1]:=b[i1]+a[i1-k] od; 
  i:=i+1; k:=k+n+1; 
od; 

#m(n,r)=coefficient of xr in (1-x)(1-x2)(1-x3)...(1-xn)(1-x)-n# 
#i1=coefficient of xi in (1-x)-n and i2=partial sum for m(n,r)# 

i1:=1; i2:=b[r]; 
for i from 1 to r do 
  i1:=i1*(n+i-1)/i; i2:=i2+i1*b[r-i]; 
od; 
RETURN(i2); 
end: 
 

Algorithm 1 
A Maple prodecure for computing the number M(n,r) of permutations of {1,...,n} with r 
inversions using Euler's formula for (1-x)(1-x2)(1-x3)...(1-xn) in terms of (1-x)(1-x2)(1-x3)...to ∞ 
and the Euler-Franklin expansion of (1-x)(1-x2)(1-x3)...to ∞. 

 

 Working up to the coefficient of xr, first substitute into (5), then into (6), and finally 
multiply by (1-x)-n.  This takes O(r+r2/n) operations, which is asymtotically faster than (4) if r = 
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o(n2) and asymptotically equivalent to (4) in the worst case, which occurs when r = floor(n(n-
1)/4) because for fixed n, M(n,r) is a symmetric unimodal function of r which reaches its 
maximum at that value.  We programmed this method in Maple (see the source code in 
Algorithm 1) and compared it to (4) on a machine which allows 1 megabyte of computation 
space.  Using the worst value of r for each n, (4) could calculate M(n,r) for n only as large as 80 
without exceeding the memory limits (and took almost three times as long as (5) and (6)), 
whereas (5) and (6) did it for n as large as 160. 

 Using (3) and (5), Knuth (see [Kn], page 16) found a non-recursive formula for M(n,r) 
which is valid for r ≤ n.  Using (6) as well, we can generalize this formula so that it works for 
any r.  The coefficient of xi in the term 1/(1-x)(1-x2)...(1-xm) in the sum in the right side of (6) is 
the number D(i;1,2,...,m) of partitions of i whose parts do not exceed m, and Colman [Col] 
showed how an explicit formula for these numbers can be found for any i and m.  We transfer the 
factor (1-x)-1 from each term except 1 in the sum in (6) to the factor (1-x)-n of (3); now the 
coefficient of this term is D(i;2,..,m) = D(i;1,..,m)-D(i-1;1,..,m), the number of partitions of i into 
parts ranging from 2 to m, whence the following non-recursive formula for M(n,r): 

M(n, r) =  
n + r −1
n -1

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
 +     (-1)k

n+ r -1- k(3k -1) / 2
n -1

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
+

n+ r -1 - k(3k +1) / 2
n -1

⎛ 

⎝ 
⎜ ⎞ 

⎠ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ k=1

f (r )

∑  +

                     
r -1
n

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
 +  (-1)k

k=1

f (r-n-1)

∑
r -1- k(3k -1) / 2

n
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
+

r -1 - k(3k +1) / 2
n

⎛ 

⎝ 
⎜ ⎞ 

⎠ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
 +           

+  

n + r − m(n + 1) − i
n

⎛ 

⎝ 
⎜ ⎞ 

⎠ i=0

r -m(n+1)
∑ D(i;2, .. ,m) +

+ (-1)k  D(i:2, .., m) ×
i=0

r -m(n+1)-k(3k -1)/2

∑
k=1

f (r-m(n+1) )

∑

× 
n + r −m(n +1) − i − k(3k -1) / 2

n
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
+

n + r −m(n +1) − i − k(3k +1) / 2
n

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

m=2

r
n+1
⎢ 
⎣ ⎢ 

⎥ 
⎦ ⎥ 

∑ ,       (7)

where f (r) = 1+ 1 + 24r
6

⎢ 

⎣ ⎢ 
⎥ 

⎦ ⎥ 
.

 

Finding a non-recursive formula from which a single value of M(n,r) can be found in O(nr) 
operations is still, as far as we know, an open problem. 

 For each prefix (g1,...,gi-1) of an (m1,...,mn)-bounded composition (g1,...,gn) of r, gn must 
be equal to r-(g1+...+gn-1), and for all i < n, the maximum value that gi can take is 
min(mi,r-(g1+...+gi-1)) and the minimum is max(0,r-(g1+...+gi-1)-(mi+1+...+mn)).  We call 0 the 
fixed minimum, mi the fixed maximum, r-(g1+...+gi-1)-(mi+1+...+mn) the mobile minimum and 
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r-(g1+...+gi-1) the mobile maximum.  If gi attains its mobile maximum, then gj = 0 for all j > i, 
and if gi attains its mobile minimum, then gj = mj for all j > i.  In lexicographic order each gi 

rises in steps of 1 from its minimum to its maximum, and in inverse lexicographic order it falls 
from its maximum to its minimum, in each interval of words in which the prefix (g1,...,gi-1) is 
constant.  Sequencing any word list, including an (m1,...,mn)-bounded composition (g1,...,gn) of 

r, in lexicographic or inverse lexicographic order is done the way an odometer flips to the next 
kilometer: scan the word from right to left to find the pivot  - the rightmost letter which is not at 
its last value (if there is none, then the word is the last one in the list), change gi to its next value, 
and then scan from left to right replacing each gj, j > i, by its first value.  During each of those 

scans, the bounds can be updated in O(1) time for each value of the index (i or j), so that 
sequencing is done in O(n) worst-case time. 

 We choose inverse lexicographical order for the inversion vectors of permutations of 
{1,...,n} with r inversions; the corresponding permutations will also be in inverse lexicographical 
order.  After the pivot gi has fallen by 1, the suffix (gi+1,...,gn) will be at its lexicographically 
largest value: for some k such that i+1 ≤ k ≤ n, gj = mj for all j, i < j < k, and gj = 0 for all k > j.  
In the corresponding permutation the following changes occur: pi changes to the largest number 
smaller than pi in S(i) = {1,...,n}-{p1,...,pi-1}; for all j such that i < j < k, pj is the largest number 
in S(j); pk is the gk+1st smallest number in S(k); and for all j > k, pj is the smallest number in S(j).  

We store an auxiliary bit vector to represent the set S(j), which is initialized at (0,...,0) and is 
updated in O(1) time for each value of the index during the two scans.  The next value of pi, the 
set of values of pj such that i < j < k, the value of pk and the set of values of pj such that k < j ≤ n 

can each be computed in O(n) worst-case time; so the same time bound holds for updating the 
entire permutation. 

2. The Gray Code 

 Klingsberg's non-recursive description of Knuth's Gray code for unrestricted length-n 
compositions of r is essentially the following.  The first composition is the lexicographically 
largest one (r,0,...,0).  For each interval of words in which the suffix (gi+1,...,gn) is fixed, gi is 
bounded between 0 and r-(gi+1+...+gn), except that g1 must be r-(g2+...+gn), and it rises in steps 
of 1 from its minimum to its maximum if (gi+1+...+gn) is even and falls in steps of 1 from its 
maximum to its minimum otherwise.  Changing the prefix (g1,...,gi-1) from its old last value to 
its new first value entails changing either g1 or gi-1 by 1.  Klingsberg showed that one could 

determine which of these two numbers to change by scanning from left to right to find the 
second leftmost non-zero element; this loop can be avoided by storing the positions of all the 
non-zero elements on a stack [Wa1]. 
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 We modify that Gray code so that it generates the (m1,...,mn)-bounded compositions 
(g1,...,gn) of r.  The first composition is the lexicographically largest one.  The sequencing rule is 
the same as Klingsberg's except for the bounds: the maximum value for gi is now 
min(mj,r-(gi+1+...+gn)) and the minimum value is now max(0,r-(gi+1+...+gn)-(m1+...+mi-1)).  

This assures that the list of words generated will be the sublist of the Knuth-Klingsberg Gray 
code consisting of those compositions which lie within the bounds. 

 The sequencing algorithm follows the same pattern as for lexicographical order.  We scan 
from left to right to find the pivot (the smallest i such that gi is not at its last value according to 

the sequencing rule).  If no such i exists, then the current word is the last one.  Otherwise, we 
change gi to its next value (raising or lowering it by 1 according to the parity of gi+1+...+gn), and 
then scan from right to left beginning with i-1 to find the largest j < i such that gj is not at its first 
value and change gj to its first value, which turns out, as we shall see below, to either lower or 

raise it by 1.  As in the case of lexicographical order, this process takes O(n) worst-case time. 

 To show that this sequencing process generates the next word according to the 
sequencing rule, it suffices to show that for all k < j, gk is at its first value according to the 
sequencing rule.  We recall that for i to be the pivot, gk must be at its last value for all k < i.  
When gi rises or falls by 1, the parity of (gi+...+gn) changes, so that for all k < i, the numbers gk, 

which had risen to their maximum value must now fall and numbers which had fallen to their 
minimum value must now rise.  The maximum value of gk is either fixed at mk or it moves with 
r-(gk+1+...+gn), falling by 1 if gi rises by 1 and vice versa.  Similarly, the minimum value of gk is 
either fixed at 0 or it moves with r-(gk+1+...+gn)-(m1+...+mk-1), falling by 1 if gi rises by 1 and 
vice versa.  If gk is at a fixed maximum or minimum, then it is now at its first value.  But this 
cannot be the case for all k < i: if it is true for all k, 2 ≤ k < i, then g1, which was equal to the old 
value of r-(g2+...+gn), must fall by 1 if gi rises by 1 and vice versa.  Let j be the largest number 
less than i such that gj is at a mobile maximum or minimum (we call j the secondary pivot).  
Then to attain its first value it must move with the maximum or minimum, rising by 1 if gi falls 
by 1 and vice versa.  If gj is at a mobile maximum, then gk = 0 for all k < j, and if gj is at a 
mobile minimum, then gk = mk for all k < j.  But then there is only one possible value for each gk, 
k < j: if gk = 0, then it cannot fall, and it cannot rise without pushing some number to its left 
below 0, and if gk = mk, then it cannot rise, and it cannot fall without pulling some number to its 
left above its bound.  Each gk, k < j, is at therefore its first value, so that the algorithm described 

in the previous paragraph does in fact generate the next word according to the sequencing rule.  
And since the sequencing rule makes each gi vary between the same limits as with 
colexicographic order (lexicographic order with left-right reversal), every (m1,...,mn)-bounded 
composition (g1,...,gn) of r will be generated exactly once. 
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      composition permutation   inverse 
  4 1 0 0    5 2 1 3 4   3 2 4 5 1 
  3 2 0 0    4 3 1 2 5   3 4 2 1 5 
  2 3 0 0    3 5 1 2 4   3 4 1 5 2 
  1 3 1 0    2 5 3 1 4   4 1 3 5 2 
  2 2 1 0    3 4 2 1 5   4 3 1 2 5 
  3 1 1 0    4 2 3 1 5   4 2 3 1 5 
  4 0 1 0    5 1 3 2 4   2 4 3 5 1 
  3 0 2 0    4 1 5 2 3   2 4 5 1 3 
  2 1 2 0    3 2 5 1 4   4 2 1 5 3 
  1 2 2 0    2 4 5 1 3   4 1 5 2 3 
  0 3 2 0    1 5 4 2 3   1 4 5 3 2 
  0 2 2 1    1 4 5 3 2   1 5 4 2 3 
  1 1 2 1    2 3 5 4 1   5 1 2 4 3 
  2 0 2 1    3 1 5 4 2   2 5 1 4 3 
  3 0 1 1    4 1 3 5 2   2 5 3 1 4 
  2 1 1 1    3 2 4 5 1   5 2 1 3 4 
  1 2 1 1    2 4 3 5 1   5 1 3 2 4 
  0 3 1 1    1 5 3 4 2   1 5 3 4 2 
  1 3 0 1    2 5 1 4 3   3 1 5 4 2 
  2 2 0 1    3 4 1 5 2   3 5 1 2 4 
  3 1 0 1    4 2 1 5 3   3 2 5 1 4 
  4 0 0 1    5 1 2 4 3   2 3 5 4 1 

 
Table 1 

Gray code for (4,3,2,1)-bounded compositions of 5, the corresponding  permutations of {1,...,5} 
with 5 inversions and their inverses.  The pivotal elements are in italics. 

 We choose to stick with Klingsberg's suffix-partitioned list rather than apply left-right 
reversal to make the list prefix-partitioned because when the bounded compositions of r are the 
inversion vectors of permutations with r inversions the permutations are easier to update.  When 
one element gk of an inversion vector rises or falls by 1, a transposition of two elements is 
induced in the corresponding permutation.  One of these two elements is pi and the other one is 
the element closest in value to pi, larger if gi rises and smaller if it falls, in the set S(i).  By using 
a suffix-partitioned list, we ensure that for the secondary pivot j, for all k < j either gk = 0 or else 
gk = mk, so that S(j) is an interval and the element with which pi swaps is either pj+1 or pj-1.  For 
the pivot i, gj will not necessarily be either 0 or mj, in which case the set of values with which pi 
is allowed to swap will fail to be an interval because of a single missing number: pj.  If |pi-pj| ≤ 2 

and the smaller of these two values is supposed to rise, then performing the transpositions in the 
wrong order would force pi to swap with pj, which is not among the values with which pi is 

allowed to swap, so that a 3-element rotation must be performed; otherwise, the two 
transpositions are independent.  Table 1 illustrates the various cases that can arise: the first 
transformation consists of two independent transpositions, the second one is a 3-element rotation 
with |pi-pj| = 2 and the third is a 3-element rotation with |pi-pj| = 1.  Once the two pivots are 

known, the permutation can be updated in O(1) time provided that the inverse permutation is also 
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stored so that the positions of the elements pi±1 and pj  

€ 

m1 can be determined quickly.  A pseudo-

code for the updating algorithm is given as Algorithm 2.  The first permutation can be computed 
from the first composition in O(n) worst-case time: the first composition is of the form 
(n-1,n--2,...,n-i+1,gi > 0,0,...,0) and the corresponding permutation is 
(n,n-1,...,n-i+2,gi+1,1,2,...,gi,gi+2,...,n-i+1). 
 
procedure NextPerm(p,inverse:array; pivot1,pivot2:integer; down:boolean) 
    a1:=p[pivot1]; a2:=p[pivot2]; 
    if (down) then {p[pivot1] decreases and p[pivot2] increases, normally by 1} 
        a3:=a1-1; a4:=a2+1 
    else       {p[pivot1] increases and p[pivot2] decreases, normally by 1} 
        a3:=a1+1; a4:=a2-1 
    end if; 

{ Normally p[pivot1]=a1 swaps with the element a3 and p[pivot2]=a2 with a4, but if that would 
make p[pivot1] swap with p[pivot2], then instead they rotate with a third element of p. } 

    if (a3=a2) then { p[pivot1] and p[pivot2] differ by 1 and would swap; 
instead they rotate with the other element adjacent in value to p[pivot2]. } 

        if (down) then a3:=a3-1 else a3:=a3+1 end if; 
        b3:=inverse[a3];  { b3 is the index in p of the third element in the rotation } 
        if (down) then p[pivot1]:=p[pivot1]-2; p[pivot2]:=p[pivot2]+1; p[b3]:=p[b3]+1 
                         else p[pivot1]:=p[pivot1]+2; p[pivot2]:=p[pivot2]-1; p[b3]:=p[b3]-1 
        end if; 
        inverse[a3]:=pivot1; inverse[a2]:=b3; inverse[a1]:=pivot2 
    else if (a3=a4) then {p[pivot1] and p[pivot2] differ by 2 and would converge; 

instead they rotate with the element a3 between them in value. } 
        b3:=inverse[a3]; { p[pivot1] and p[pivot2] rotate with p[b3] } 
        if (down) then p[pivot1]:=p[pivot1]-2; p[pivot2]:=p[pivot2]+1; p[b3]:=p[b3]+1 
                         else p[pivot1]:=p[pivot1]+2; p[pivot2]:=p[pivot2]-1; p[b3]:=p[b3]-1 
        end if; 
        inverse[a2]:=pivot1; inverse[a1]:=b3; inverse[a3]:=pivot2 
    else {p[pivot1] swaps with p[pivot1]±1 and p[pivot2] swaps with p[pivot2]•1 } 
        b3:=inverse[a3]; 
        if (down) then p[pivot1]:=p[pivot1]-1; p[b3]:=p[b3]+1 
                         else p[pivot1]:=p[pivot1]+1; p[b3]:=p[b3]-1 
        end if; 
        inverse[a3]:=pivot1; inverse[a1]:=b3; 
        b4:=inverse[a4]; 
        if (down) then p[pivot2]:=p[pivot2]+1; p[b4]:=p[b4]-1 
                         else p[pivot2]:=p[pivot2]-1; p[b4]:=p[b4]+1 
        end if; 
        inverse[a4]:=pivot2; inverse[a2]:=b4 
    end if 
end NextPerm. 
 

Algorithm 2 
Finding the next permutation in Gray code order and its inverse in O(1) time 

given the two pivots and the direction in which the first one changes. 
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3. Loop-free implementation 

 To find the pivot i the secondary pivot j and the direction in which pi changes, a case-by-
case analysis is necessary.  In what follows, d  =  pi+1+...+pn mod 2, so that d = 1 means that pi 
falls by 1 and pj rises by 1, and d = 0 means vice versa.  The individual cases are illustrated in 
Table 2.  We recall that j is the largest index  < i such that after pi changes to its next value, pj is 
not at its first value, and that in scanning left from pi "first value" alternates between "maximum" 

and "minimum" every time an odd number is passed. 

 (1): 0 < p1 < m1.  The maximum value for every other number is its fixed bound and the 
minimum value is 0, and every number between p1 and pi is either at its fixed maximum or  
minimum, both before and after pi  changes, and therefore at its first value, which implies that 

j = 1.  There are two subcases (1.1) and (1.2) in which i > 2. 

 (1.1): p2 = 0 and p3+...+pn is odd.  This subcase is further divided into two subsubcases. 

 (1.1.1): If pi and its suffix have opposite parity, then every number encountered while 
scanning left from pi is at its minimum value until an odd number is passed or until the index 
drops to 1, which implies that pi-1 = ... = p2 = 0.  See Case 1 (d = 1) and Case 2 (d = 0) in Table 

2. 

 (1.1.2): If pi and its suffix have the same parity, then every number met while scanning 
left from pi is at its maximum value until an odd number is passed, and every number to its left is 
at its minimum value.  This implies that there is some element pk between p2 and pi which is at 
an odd bound, every number between pk and pi is at an even bound and every number between 
p1 and pk is 0.  See Case 3 (d = 1) and Case 4 (d = 0). 

 (1.2):  p2 = m2 and p3+...+pn is even.  Then pi and its suffix must have the same parity, 

because otherwise every number to its left would have to be at its minimum value, which is 0, 
including p2, which is m2 > 0.  Instead, every number between p2 and pi is at its maximum value, 

which is an even bound because if an odd bound were reached, every number to its left would be 
0 including p2.  See Case 5 (d = 1) and Case  6 (d = 0). 

 (1.3): In all other cases, p2 is not at its last value; so i = 2.  See case 7 (d = 1) and case 8 

(d = 0). 

 (2): p1 = ... = pf-1 = 0 and pf > 0 for some f > 1.  The minimum value for every other 
number is 0, and the maximum value of every other number except possibly pf is its fixed bound; 

so by the same argument used for (1) j ≤ f. 
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 (2.1): Suppose that every number to the left of pi is 0 (f = i).  Then no number to the left 
of pi can fall; so pi cannot rise, and so d must be 1.  If pi is odd, then when it falls the first 
(maximum) value of pi-1 rises from 0 to 1; so j = i-1 (see Case 9).  If pi is even, then when its 
falls the first (minimum) value of every number from pi-1 to p2 stays at 0; so j = 1 (see Case 10). 

 (2.2): Suppose that not every number to the left of pi is 0 (f < i).  Then pi and its suffix 

must have the same parity: otherwise every number to its left would be at its minimum value, 
which is 0, including pf.  Instead, every number between pf and pi is at its maximum value - an 

even bound. 

 (2.2.1): If pi is odd it must fall because its suffix is odd too; so pj must rise.  If pf < mf, 
then it can rise, and so j = f (see Case 11).  Suppose that pf = mf.  If pi is odd, then after pi falls, 
the suffix of pf-1 will be even; so its first value is its minimum 0, and the same will be true for all 
the numbers between pi and p1, and so j = 1 (Case 12).  If pi is even, then after pi falls, the suffix 
of pf-1 will be odd; so its first value is its maximum, which rises to 1, and so j = f-1 (Case 13). 

 (2.2.2):  If pi is even it must rise because its suffix is even too; so pj must fall.  Since 
pf > 0, it can fall, and so j = f (Case 14). 

 (3): p1 = m1,...,pf-1 = mf-1 and pf < mf for some f > 1.  The maximum value for every other 
number is its fixed bound, and the minimum value of every other number except possibly pf is 0.  

Again, j ≤ f. 

 (3.1): Suppose that every number to the left of pi is at its bound (f = i).  Then no number 
to the left of pi can rise; so pi cannot fall, and so d must be 0.  If pi is odd, then when it rises the 
first (minimum) value of pi-1 falls, and pi-1 can fall; so j = i-1 (Case 15).  If pi is even, then when 
it rises every number met while scanning left from pi must be set to its maximum value until an 
odd number is passed or the index drops to 1.  If one of the numbers between p1 and pi is odd, let 

k be the index of the rightmost such number; then j = k-1 (Case 16).  Otherwise j = 1 (Case 17). 

 (3.2): Suppose that not every number to the left of pi is at its bound (f < i). 

 (3.2.1): Suppose that pi and its suffix have opposite parity.  Then every number between 
pf and pi must be at its minimum value, which is 0.  If pi is odd (so that it rises and pj falls) and 
pf = 0 so that it can't fall, then j = f-1, because pf-1 can fall (Case 18).  Otherwise j = f whether pi 
is odd and pf > 0 (Case 19) or pi is even (Case 20). 

 (3.2.2): Suppose that pi and its suffix have the same parity.  There must be some odd 
number between pf  and pi; otherwise every number to the left of pi would be at its bound.  Let pk 
be the rightmost such number.  Then every number between pk and pi is at its maximum, an even 
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bound, pk is at its maximum too, an odd bound, and every number between pf and pk is at its 
minimum, which is 0.  If pi is odd it must fall, and since pf < mj it can rise; so j = f (Case 21).  If 
pi is odd it must rise.  If pf > 0 it can fall; so j = f (Case 22); otherwise j = f-1, because pf-1 can 

fall (Case 23). 

 This exhausts all the cases. 

Case 1: 0<g<m↑,0,0*,even>0↓,odd suffix 
Case 2: 0<g<m↓,0,0*,odd<m↑,even suffix 
Case 3: 0<g<m↑,0,0*,odd m,(even m)*,odd↓,odd suffix 
Case 4: 0<g<m↓,0,0*,odd m,(even m)*,even<m↑,even suffix 
Case 5: 0<g<m↑,m,(even m)*,odd↓,odd suffix 
Case 6: 0<g<m↓,m,(even m)*,even<m↑,even suffix 
Case 7: 0<g<m↑,>0↓,odd suffix 
Case 8: 0<g<m↓,<m↑,even suffix 
Case 9: 0*,0↑,odd↓,odd suffix 
Case 10: 0↑,0*,even>0↓,odd suffix 
Case 11: 0,0*,0<g<m↑,(even m)*,odd↓,odd suffix 
Case 12: 0↑,0*,odd m,(even m)*,odd↓,odd suffix 
Case 13: 0*,0↑,even m,(even m)*,odd↓,odd suffix 
Case 14: 0,0*,>0↓,(even m)*,even<m↑,even suffix 
Case 15: m*,m↓,odd<m↑,even suffix 
Case 16: m*,m↓,odd m,(even m)*,even<m↑,even suffix 
Case 17: m↓,(even m)*,even<m↑,even suffix 
Case 18: m*,m↓,0,0*,odd<m↑,even suffix 
Case 19: m,m*,0<g<m↓,odd<m↑,even suffix 
Case 20: m,m*,g<m↑,0*,even>0↓,odd suffix 
Case 21: m,m*,g<m↑,0*,odd m,(even m)*,odd↓,odd suffix 
Case 22: m,m*,0<g<m↓,0*,odd m,(even m)*,even<m↑,even suffix 
Case 23: m*,m↓,0,0*,odd m,(even m)*,even<m↑,even suffix 
 

Table 2 
The possible transformations of a bounded integer composition. 

A number which is equal to its bound is represented by m. 
An asterisk represents 0 or more repetitions of the same type of number. 

The two pivotal elements have arrows to their right indicating the direction of the change. 

 It would be possible to implement the sequencing algorithm so that it runs in O(1) worst-
case time by storing the maximal intervals of zeros or numbers at their bounds on a stack.  This 
would require, for each such interval, its left and right indices and an integer to indicate whether 
it consisted of zeros or, if not, had an even sum, for a total of three size-n variable arrays.  In 
addition we would need two size-n fixed arrays: for each index i we would need to know the 
index of the nearest odd bound to its left and to its right.  At most the top three items on the stack 
would have to be accessed to find i, j and d (the bound of three is attained in Cases 21-23 of 
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Table 2).  But we did not do so because a more space-efficient implementation can be found by 
generalizing Ehrlich's method for loop-free pivot-finding. 

 Ehrlich's method cannot be used as it stands, because it works only if for each suffix 
(gi+1,...,gn), gi assumes at least two distinct values in the interval in which the suffix is constant, 
whereas if gi+1 is at its mobile maximum or minimum, then gi can assume only one value (0 or 
mi) and in fact that interval consists of a single word.  We generalize Ehrlich's method so that it 

works for this case too, provided that one can update in O(1) worst-case time the smallest index 
q such that gq can assume at least two distinct values.  The pseudo-code is listed as Algorithm 3, 

and a correctness proof is included in the comments. 

 Once we know the pivot i, we can determine which of the 23 cases applies to the current 
bounded composition, find j and d and update gi, gj and f (defined as 1 + the length of a prefix of 

zeros or of numbers equal to their bounds, or 1 if neither such prefix exists) in O(1) worst-case 
time.  The variable q of Algorithm 3 is equal to f if f > 1; otherwise q = 2.  This follows from the 
observation that every number in a prefix of zeros or of numbers equal to their bounds can 
neither rise nor fall unless some number to its right moves, whereas the number following a 
maximal prefix of zeros can fall and the number following a maximal prefix of numbers equal to 
their bounds can rise, and if 0 < g1 < m1 then g1 is determined by its suffix but g2 is not.  

Algorithm 4 shows the entire updating procedure.  It requires only two auxiliary arrays: the 
variable array e from Algorithm 3 and a fixed array L, where L[i] is the largest index j < i such 
that m[j] is odd, or 0 if no such index exists. We recall that the initial composition is the 
lexicographically largest one; the initial value of the array e (in terms of q defined above) and of 
the Boolean variable Done are given in Algorithm 3.  All the arrays including L can be initialized 
in O(n) time. 

 Algorithms 2 and 4, as well as inverse lexicographical order generation and Gray code 
generation without loop-free sequencing, were programmed in C and tested (source codes are 
available from the author on request).  When the 25598185 permutations of {1,...,12} with 33 
inversions were generated, loop-free sequencing ran 27% faster than Gray code generation 
without loop-free sequencing and 19% faster than inverse lexicographical order generation.  It 
would appear that loop-free sequencing affords some speed-up if it is sufficiently optimised. 

 We note that Ruskey [Ru] proved the existence of a different Gray code for bounded 
integer compositions.  The problem of implementing loop-free sequencing of this Gray code is 
still open. 
 
{q is the smallest index such that g[q] assumes at least two values, determined by the sequencing 
rule, in the interval of words in which the current suffix of g[q] is constant} 
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initial value: Done is false, e[1] = the initial value of q and e[i]=i for i from 2 to n+1; 
 
{invariant: If (g[i],...,g[j-1]) is a z-word - that is, a maximal subword of letters, each at its last 
value - for some j>i, then e[i]=j; otherwise e[i]=i.} 
 
{The invariant holds initially because each g[i] is at its first value, which is equal to its last value 
for all i<q but not for q.  Assume it holds before the updating algorithm is executed.} 
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Procedure Update(n,q:integer; g:array[1..n]; e:array[1..n+1]; Done:boolean} 
    i:=e[1]; 
    if i>n then                              {Each g[j] is at its last value; so the current word is the last one.} 
        Done:=true; return 
    end if; 

{Otherwise i is the pivot - the smallest index such that g[i] is not at its last value.} 
    g[i]:=its next value; 
    for j:=i-1 downto 1 do g[i]:=its first value end for;               {O(1) changes for a Gray code} 
    update q; 
    e[1]:=q;             {Since g[i] changed, q≤i.  For each j<q, g[j] is at its first value = its last 
value.} 
    if g[i] is at its last value then 

{If e[i+1]=i+1, then g[i+1] is not at at last value, 
because g[i] wasn't at its last value until now. 

Otherwise, i+1 and e[i+1]-1 are the smallest and largest indices of a z-word.} 
        if i=q then 

{If e[i+1]=i+1, the z-word beginning at index 1 
which used to end at index i-1 (or not exist, if i=1) now ends at index i; 

otherwise it merges with the z-word beginning at index i+1 and ending at index e[i+1]-1, 
and in either case it ends at index e[i+1]-1.} 

            e[1]:=e[i+1] 
        else 

{g[i] now begins a z-word.  If e[i+1]=i+1, that z-word ends at index i. 
Otherwise, it prolongs to the left the subword beginning at index i+1 

and ending at index e[i+1]-1.  In either case, it ends at index e[i+1]-1.} 
            e[i]:=e[i+1] 
        end if;                                                           {The invariant holds for every index from 1 to 
i} 
        e[i+1]:=i+1;   

{Since g[i] is at its last value, g[i+1] cannot begin a z-word; 
so the invariant now holds for i+1 too, 

and since no change is made beyond i+1, it holds everywhere.} 
    end if 

{If g[i] is not at its last value, then either q=1 and g[1] does not begin a subword, 
or else q>1 and the subword beginning at index 1 ends at index q-1. 

In either case, the invariant holds for every index up to q, 
and since no change is made beyond q, it holds everywhere.} 

end Update.            {In all cases, if the invariant holds before execution, then it holds 
afterwards.} 

 
Algorithm 3 

 
Generalization of Ehrlich's O(1)-time pivot-finding algorithm to wordlists in which all the words 
with a common suffix form an interval of consecutive words in which the letter preceeding the 

suffix may take a single value if the interval consists of a single word. 
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Procedure NextComp(n,r,f,i,j,d,: integer; g,m:array[1..n]; e:array[1..n+1]; Done:boolean) 
{The array g is the length-n composition of r bounded by the array m,  

i is the pivot, j is the secondary pivot, Done means g is the last composition, 
d=1 means g[i] goes down and g[j] goes up and d=0 means vice versa, 

f is 1 + the length of a prefix of zeros or elements of g at their bounds.} 
    i:=e[1]; 
    if i>n then Done:=true; return; end if; 
    if f=1 then {0<g[1]<m[1]} 
        Cases_1-8(n,r,f,i,j,d,g,m) 
    else if g[1]=0 then 
        Cases_9-14(n,r,f,i,j,d,g,m) 
    else {g[1]=m[1]} 
        Cases_15-23(n,r,f,i,j,d,g,m) 
    end if; {end of all the cases; now e gets updated} 
    if f=1 then e[1]:=2 else e[1]:=f end if; {This is the variable q of Algorithm 3} 
    if g[i]=m[i] or g[i]=0 or f=i then {g[i] is at its last value, a mobile limit if f=i} 
        if i=e[1] then e[1]:=e[i+1] else e[i]:=e[i+1] end if; 
        e[i+1]:=i+1 
    end if {end of updating e} 
end NextComp. 
 
Procedure Cases_1-8(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
{ f=1 } 
    j:=1; 
    if i>2 then { either g[2]=0 or g[2]=m[2] } 
        Cases_1-6(n,r,f,i,j,d,g,m) 
    else            { 0<g[2]<m[2] } 
        Cases_7-8(n,r,f,i,j,d,g,m) 
    end if 
end Cases_1-8. 
 
Procedure Cases_1-6(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
{ f=1 and i>2 } 
    if g[2]=0 then 
        Cases_1-4(n,r,f,i,j,d,g,m) 
    else {g[2]=m[2]} 
        Cases_5-6(n,r,f,i,j,d,g,m) 
    end if 
end Cases_1-6. 
 
Procedure Cases_1-4(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
{ f=1 and i>2 and g[2]=0 }  
    if g[i-1]=0 then 
        Cases_1-2(n,r,f,i,j,d,g,m) 
    else {g[i-1]=m[i-1]} 
        Cases_3-4(n,r,f,i,j,d,g,m) 
    end if 
end Cases_1-4. 
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Procedure Cases_1-2(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
{ f=1 and i>2 and g[2]=0 and g[i-1]=0 } 
    if g[i] is odd then {Case 2} 
        d:=0; inc(g[i]); dec(g[1]); 
        if g[1]=0 then f:=i; end if 
    else {Case 1} 
        d:=1; dec(g[i]); inc(g[1]); 
        if g[1]=m[1] then f:=2 end if 
    end if 
end Cases_1-2. 
 
Procedure Cases_3-4(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
{ f=1 and i>2 and g[2]=0 and g[i-1]=m[i-1] } 
    if g[i] is odd then {Case 3} 
        d:=1; dec(g[i]); inc(g[1]); 
        if g[1]=m[1] then f:=2 end if 
    else {Case 4} 
        d:=0; inc(g[i]); dec(g[1]); 
        if g[1]=0 then f:=L[i] end if 
    end if 
end Cases_3-4. 
 
Procedure Cases_5-6(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
{ f=1 and i>2 and g[2]=m[2] } 
    if g[i] is odd then {Case 5} 
        d:=1; dec(g[i]); inc(g[1]); 
        if g[1]=m[1] then f:=i; end if 
    else {Case 6} 
        d:=0; inc(g[i]); dec(g[1]); 
        if g[1]=0 then f:=2; end if 
    end if 
end Cases_5-6. 
 
Procedure Cases_7-8(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
{ f=1 and i=2 } 
    if r-g[1]-g[2] is odd then {Case 7} 
        d:=1; dec(g[2]); inc(g[1]); 
        if g[1]=m[1] then f:=2; end if 
    else {Case 8} 
        d:=0; inc(g[2]); dec(g[1]); 
        if g[1]=0 then f:=2; end if 
    end if 
end Cases_7-8. 
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Procedure Cases_9-14(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
{ g[1]=0 } 
    if i=f then 
        Cases_9-10(n,r,f,i,j,d,g,m) 
    else 
        Cases_11-14(n,r,f,i,j,d,g,m) 
    end if 
end Cases_9-14. 
 
Procedure Cases_9-10(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
{ g[1]=0 and i=f } 
    d:=1; 
    if g[i] is odd then {Case 9} 
        dec(g[i]); j:=i-1; g[j]:=1; 
        if g[1]<m[1] then dec(f) end if 
    else {Case 10} 
        dec(g[i]); j:=1; g[1]:=1; 
        if m[1]=1 then f:=2 else f:=1 end if 
    end if 
end Cases_9-10. 
 
Procedure Cases_11-14(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
 { g[1]=0 and i>f } 
    if g[i] is odd then 
        Cases_11-13(n,r,f,i,j,d,g,m) 
    else {Case 14} 
        d:=0; inc(g[i]); j:=f; dec(g[f]); 
        if g[f]=0 then inc(f) end if 
    end if 
end Cases_11-14. 
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Procedure Cases_11-13(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
{ g[1]=0 and i>f and g[i] is even } 
    d:=1; dec(g[i]); 
    if g[f]<m[f] then {Case 11} 
        j:=f; inc(g[f]) 
    else {Case 12 or 13} 
        if g[f] is odd then {Case 12} 
            j:=1; g[1]:=1; 
            if m[1]>1 then 
                f:=1 
            else 
                if f>2 or g[j]<m[j] then f:=2 else f:=i end if 
            end if {end of Case 12} 
        else {Case 13} 
            j:=f-1; g[j]:=1; 
            if j>1 or m[1]>1 then 
                dec(f) 
            else 
                if g[f]=m[f] then f:=i end if 
            end if {end of Case 13} 
        end if {end of Cases 12 and 13} 
    end if 
end Cases_11-13. 
 
Procedure Cases_15-23(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
{ g[1]=m[1] } 
    if i=f then 
        Cases_15-17(n,r,f,i,j,d,g,m) 
    else if g[i-1]<m[i-1] then 
        Cases_18-20(n,r,f,i,j,d,g,m) 
    else 
        Cases_21-23(n,r,f,i,j,d,g,m) 
    end if 
end Cases_15-23. 
 
Procedure Cases_15-17(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
{ g[1]=m[1] and i=f } 
    d:=0; 
    if g[i] is odd then {Case 15} 
        inc(g[i]); j:=i-1; dec(g[j]); 
        if g[1]>0 then dec(f) end if 
    else {Case 16 or 17} 
        inc(g[i]); 
        j:=L[i]-1; 
        if j<1 {Case 17 else Case 16} then j:=1 end if; 
        dec(g[j]); 
        if g[1]=0 then f:=2 else f:=j end if 
    end if 
end Cases_15-17. 
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Procedure Cases_18-20(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
{ g[1]=m[1] and i>f and g[i-1]<m[i-1] } 
    if g[i] is odd then {Case 18 or 19} 
        d:=0; inc(g[i]); 
        if g[f]>0 then {Case 19} 
            j:=f; dec(g[j]) 
        else {Case 18} 
            f:=f-1; j:=f; dec(g[j]); 
            if g[1]=0 then f:=i end if 
   else {Case 20} 
        d:=1; dec(g[i]); 
        j:=f; inc(g[j]); 
        if g[j]=m[j] then inc(f) end if 
    end if 
end Cases_18-20. 
 
Procedure Cases_21-23(n,r,f,i,j,d,: integer; g,m:array[1..n]) 
{ g[1]=m[1] and i>f and g[i-1]=m[i-1] } 
    if g[i] is odd then {Case 21} 
        d:=1; dec(g[i]); j:=f; inc(g[j]); 
        if g[j]=m[j] then 
            if g[j+1]>0 then f:=i else inc(f) end if 
        end if {end of Case 21} 
    else {Case 22 or 23} 
        d:=0; inc(g[i]); 
        if g[f]>0 then {Case 22} 
            j:=f; dec(g[j]) 
        else {Case 23} 
            j:=f-1; dec(g[j]); 
            if g[1]=0 then f:=L[i] else dec(f) 
        end if {end of Cases 22 and 23} 
    end if 
end Cases_21-23. 
 

Algorithm 4 
 

Loop-free updating of the (m1,...,mn)-bounded composition (g1,...,gn) of r 
using Ehrlich's variable auxiliary array e and the static auxiliary array L. 

The two pivots i and j and the direction variable d are returned for use in Algorithm 2. 
 

Acknowledgment: I wish to thank Greg Egan for pointing out two errors in the pseudocode of 
Algorithm 4.  I have fixed them in this version. 
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